题目:利多卡因抑制ATP诱导的大鼠小胶质细胞分泌TNF-α,IL-1β和IL-6
作者姓名:苏殿三、王祥瑞
单位:上海交通大学医学院附属仁济医院麻醉科
地址:上海市东方路1630号,仁济医院麻醉科,200127。电话:02168383702,E-mail:diansansu@sina.com ,手机:13817294179
摘要
目的:本研究应用ELISA,蛋白免疫印迹技术法和Realtime PCR等方法研究利多卡因对ATP诱导的原代培养的小胶质细胞内钙离子,TNF-α(肿瘤坏死因子α),IL-1β(白介素1β)和IL-6(白介素6)的影响,并了解其和小胶质细胞的p38MAPK信号通路之间的关系。
方法:原代培养大鼠小胶质细胞,随机分为5组: Control组,
结果:① 蛋白免疫印迹实验结果发现,
结论:本实验结果显示,利多卡因可以抑制ATP诱导的大鼠小胶质细胞分泌TNF-α,IL-1β和IL-6,其机制可能是抑制ATP诱导的细胞内钙增加以及小胶质细胞内的p-p38MAPK激活。
Lidocaine Attenuated The Elevation of The Proinflammatory Cytokines Triggered By Extracellular ATP in Rat Microglia Through Inhibiting The Increase of Intracellular Calcium
Authors: Su Dian-san, Ph.D.;Wang Xiang-rui, Ph.D.*
Institute: Department of Anesthesiology,
Address: Department of Anesthesiology,
Abstract
Background: Neuropathic pain is a kind of refractory chronic pain syndrome. Recent studies demonstrate that intrathecal lidocaine could produce prolonged reversal of established hyperalgesia or allodynia induced by chronic constriction injury(CCI) and intrathecal lidocaine indeed remarkably suppressed the p38 MAPK activation in the hyperactive microglia. When these data are considered together, a unifying hypothesis emerges which implicates that lidocaine may directly act on the microglia and attenuate the cytokines released by it.
Methods: The present investigation assessed the influence of lidocaine on the level of p-P38 MAPK, tumor necrosis factor-alpha(TNF-α),interleukin-1beta(IL-1β), IL-6 and intracellular calcium triggered by the extracellular ATP in cultured rat microglia using western blot, real-time reverse transcription– polymerase chain reaction, enzyme-linked immunosorbent assay and calcium Imaging .
Results: Lidocaine(
Conclusion: These findings along with our earlier observations of an anti-allodynic activity of intrathecal lidocaine on the CCI rat may be by attenuating the elevation of the [Ca2+]i and then inhibited the expression of the TNFα ,IL-6 and IL-1β induced by the activation of the p38MAPK in the microglia.
Keywords: Microglia; Lidocaine; Tumor Necrosis Factorα; Interleukin-1β; ; Interleukin-6
中文全文
神经损伤后,小胶质细胞怎样参与脊髓背角痛觉传递,在这个疼痛传递的网络中具体起怎样的作用仍不清楚。目前最合理的解释是:①神经损伤后释放ATP,作用于小胶质细胞上的P2X4受体1,2,细胞内Ca2+浓度增高,诱导小胶质细胞内p38MAPK激活。②外周神经损伤,神经元释放化学因子。如:肿瘤坏死因子-α (tumor necrosis factor-α,TNF-α), 白介素1β(interleukin-1β,IL-1β)前体,直接作用于小胶质细胞上的TNFα和IL-1β受体,直接诱导p38MAPK在小胶质细胞内激活。③小胶质细胞内激活的p-p38MAPK,诱导NF-κB或其他转录因子,使小胶质细胞合成和分泌各种细胞因子和生长因子TNFα,IL-1β,白介素6 (interleukin-6, IL-6),脑源生长因子(Brain derived neurotrophic factor,BDNF)。这些细胞因子和生长因子又通过突触前和突触后作用又使得感受活化,并能显著促进痛觉超敏产生3-5 ,进一步刺激了小胶质细胞本身,诱导级联反应,导致p38MAPK持续磷酸化表达。因此,小胶质细胞,神经元和细胞因子均积极的参与了神经痛的中枢敏化过程,形成了一个恶性循环。
在先前的实验中我们发现,CCI神经痛模型大鼠脊髓小胶质细胞p-p38MAPK表达明显增高,而鞘内单次注射25mg/kg的利多卡因可明显抑制其表达。但在第二部分的实验中还有许多问题尚不清楚:利多卡因是否直接作用于小胶质细胞?利多卡因又是怎样抑制p-p38MAPK的表达?利多卡因抑制了p-p38MAPK表达后,是否如我们推测那样抑制小胶质细胞分泌细胞因子,从而减轻了CCI大鼠的痛觉异常?
因此我们应用外源性的ATP代替在体神经损伤后神经原释放ATP,应用ELISA,蛋白免疫印迹技术法和Realtime PCR等方法研究利多卡因对ATP诱导的原代培养的小胶质细胞内钙离子,TNF-α,IL-1β和IL-6的影响,并了解其和小胶质细胞的p38MAPK信号通路之间的关系。初步探讨利多卡因抑制小胶质细胞p-p38MAPK激活的内在机制。
材料和方法
实验分组和流程:
原代培养大鼠的小胶质细胞,根据不同的处理条件分成对照组,ATP
原代培养大鼠小胶质细胞
取5只新生SD大鼠(出生24 h内),在无菌条件下断头取出脑组织,充分剪碎脑组织,加入0.05%胰酶,再移入15 mL离心管,用吸管反复吹打消化至肉眼观察无明显的脑组织团块。加入DMEM完全培养基(含10 胎牛血清、100 U/mL青霉素和100μg/mL链霉素)终止消化,再次反复吹打制成单细胞悬液,离心,弃上清;加定量完全培养液再次制成细胞悬液,接种入10个
Western blot 检测 p38MAPK和p-pMAPK的变化
将纯化培养的小胶质细胞换成DMEM基培,过夜。次日按照不同的分组加药,刺激10分钟后,抽提总蛋白、SDS-PAGE电泳、转膜,染色,封闭,ECL显影然后加入anti-p-p38一抗(anti-rabbit, 1:500; Signalway Antibody),
Realtime PCR 检测TNF-α,IL-1β和IL-6mRNA的变化
将纯化培养的小胶质细胞分组在
次日分别加入不同的药物,后提取细胞总RNA,然后行RealtimePCR检测。PCR的引物序列见表1,反应体系(20μl)见表2.
表1. PCR 引物序列
Gene |
Orintation |
Sequence |
Tm (℃) |
Accession No. |
TNF-α |
Sense |
TCTTCAAGGGACAAGGCTGC |
59 |
AJ002278 |
Antisen |
TCCTTAGGGCAAGGGCTCTT |
59 | ||
IL-6 |
Sense |
TCACAGAGGATACCACCCACAA |
60 |
NM_012589 |
Antisen |
TCAGAATTGCCATTGCACAACT |
60 | ||
IL-1β |
Sense |
CTCACAGCAGCATCTCGACAA |
59 |
NM_031512 |
Antisen |
GGTGCTTGGGTCCTCATCCT |
59 |
表2.Real Time PCR的反应体系(20μl)
试剂 |
使用量 |
终浓度 |
SYBR peimex EX TaqTM(2×) |
10.0μl |
1× |
PCR Forward Primer(10μM) |
0.4μl |
0.2μM*1 |
PCR Reverse Primer(10μM) |
0.4μl |
0.2μM*1 |
ROX Reference Dye (50×) |
0.4μl |
1× |
DNA模板 |
2.0μl |
*2 |
ddH2O |
6.8μl |
|
Total |
20μl |
*4 |
以两步法PCR扩增标准程序进行扩增。 以ABI Prism 7000 SDS 软件(Applied Biosystems)进行Real time PCR染色信号的收集和资料分析。输入96孔板中需采集的孔位及检测基因类别,每个标本均作3个复孔。PCR结束后,确定基线范围,分析各孔CT 阈值。CT 值反映了模板扩增到一定量拷贝数时(处于指数上升期)所需反应循环数大小。为消除每份样本的浓度不一致与每块板之间条件操作因素的差异所形成的误差,需要对所获得的原始CT 值进行标化。每份样本每个基因的CT 值减去该样本看家基因GAPDH的CT 值为ΔCT,再减去校正样本的CT 值为ΔΔCT。取 2-ΔΔCt 值为计算指标,2-ΔΔCt越大,参与反应的起始模板量就越大。
ELISA法检测细胞因子
采用双抗体夹心ELISA法,抗大鼠IL-6, IL-1β或TNF-α单抗包被于酶标板上,标本和标准品中的IL-6, IL-1β或TNF-α会与单抗结合,游离的成分被洗去。加入生物素化的抗大鼠IL-6, IL-1β或TNF-α抗体和辣根过氧化酶标记的亲合素。生物素和亲合素特异性结合;抗大鼠IL-6, IL-1β或TNF-α抗体与结合在单抗上的大鼠IL-6, IL-1β或TNF-α结合而形成免疫复合物,游离的成分被洗去。加入显色剂,若反应孔中有IL-6, IL-1β或TNF-α,辣根过氧化酶会使无色的显色剂现蓝色,加终止液变黄,在450nm处测OD值,IL-6, IL-1β或TNF-α浓度与OD450值之间呈正比,可通过绘制标准曲线求出标本中IL-6, IL-1β或TNF-α浓度。
单细胞钙成像检测细胞内钙变化
培养的小胶质细胞纯化后,接种于铺有小玻片的培养皿中,备用。以Fura-2做Ca2+的荧光指示剂。把铺有小胶质细胞的玻片浸泡在2 μMFura-2中,避光、室温,负载30分钟,然后用无染料的细胞外液清洗细胞,充分洗掉未负载上的Fura-2。再于每个样品槽中加入0.5ml的细胞外液,避光,待测。检测细胞内自由Ca2+浓度( [Ca2+]i)。将负载好的细胞放于倒置显微镜的载物台上避光检测。用不同浓度的实验药液(细胞外液,1mMATP,细胞外液,1mMATP+10mMLidocaine,细胞外液,1mMATP)按顺序对细胞进行灌流。加药系统用DAD-12 微灌流系统(ALA)。 由CCD(IMAGO-QE; TILL)联合荧光显微镜(Leica)实时拍摄细胞内荧光强度动态变化,激发光源通过多普光源器提供(TILL)。每种实验条件下做三次以上实验,每次检测3-5个细胞的[Ca2+]i动力学。用Igor4.03(HEKA,Germany)。软件分析各细胞的实验结果。与基础值相减后,作直方图比较。
MTT分析法检测细胞活性
将纯化好的小胶质细胞,用DMEM+10%FBS培养液配置成单个细胞悬液,以每孔1×105个细胞接种到96孔板,每孔体积200ul,5%CO2,
统计方法
采用均数±标准误(mean±SD)表示,同一组变量比较采用Student t 检验。 P<0.05为差异有显著性。Real-time PCR以2-ΔΔCt方法进行基因表达差异的检验8,9。
3.4 实验结果
Westen Blotting 结果
用蛋白免疫印迹法检测不同浓度利多卡因对
图1 Westen blotting检测不同浓度利多卡因对
Real Time PCR结果
图3-4不同浓度利多卡因对
ELISA结果
图3 用ELISA法测定不同浓度利多卡因对
单细胞钙成像检测细胞内钙变化结果
用钙成像的方法记录细胞内钙的变化结果发现,用
图4利多卡因可抑制
(A)图中上方线为基线,下方线为接受药物的小胶质细胞。 (B)统计结果显示用
MTT实验结果
MTT法检测
图5 MTT法检测
讨论
胶质细胞由于没有突触,既往认为其不参与信号传导和疼痛过程。然而,越来越多的证据表明胶质细胞,特别是小胶质细胞在疼痛中发挥重要作用,而且可能不受神经元“管理”。尤其是在病理性疼痛中,小胶质细胞中p38MAPK作用的研究进展正在成为病理性疼痛研究的新领域。
目前研究发现p38MAP有四种异构体,在脊髓存在两种, 即p38 MAPKα和p38 MAPKβ。其中p38 MAPKα主要在脊髓背角神经元表达, 而p38 MAPKβ则在小神经胶质细胞中表达10。Svensson11采用鞘内注射这两种异构体的反义寡核苷酸的方法,观察到p38MAPKβ反义寡核苷酸可减少福尔马林引起的大鼠缩足反应和鞘内注射P物质诱导的痛觉过敏现象,而p38 MAPKα反义寡核苷酸却无此作用。提示了脊髓小神经胶质细胞p38 MAPKβ在脊髓伤害性感受的传递过程中可能具有重要作用。
在临床上外伤性脊髓损伤(Traumatic spinal cord injury ,TSCI)不仅导致运动障碍,还会产生明显的慢性难治性疼痛。Hains 12发现大鼠TSCI模型后,其脊髓小胶质细胞激活, p-p38MAPK明显增加。Inoue13在大鼠SNL神经痛模型中发现,大鼠出现显著机械性异常痛的同时,脊髓背角损伤侧出现小胶质细胞激活,P2X4与p-p38MAPK含量也同样增高。因此,推测脊髓小胶质细胞上p38MAPK的激活在神经损伤后导致异常性疼痛具有重要作用14,15。
我们第二部分大鼠在体实验结果表明,慢性坐骨神经压迫痛(CCI)模型大鼠的脊髓的p-p38MAPK表达明显增高,且只特异性的表达于脊髓小胶质细胞内,在神经元和星形胶质细胞并没有发现。同时我们发现,鞘内单次注射25mg/kg的利多卡因可以明显抑制小胶质细胞内p-p38MAPK表达。但是在第二部分的实验中,我们仍然不清楚,利多卡因是否能够直接作用于小胶质细胞而产生抑制小胶质细胞内p-p38MAPK表达?
神经损伤后释放ATP,作用于小胶质细胞上的P2X4受体1,2,诱导p38MAPK在小胶质细胞内激活。Shigemoto-Mogami 7和Hide 6均证明,
虽然神经损伤后,小胶质细胞内p-p38MAPK表达增加在慢性疼痛中的发生发展中所起的关键作用越来越肯定,但是p-p38MAPK的上下游究竟怎样变化引起异常疼痛仍未明确。
Svensson17发现TNF-α抑制剂(依那西普)可明显抑制脊髓p38MAPK的激活。反过来,作为TNF-α主要产生基地,ATP刺激可诱导小胶质细胞分泌TNF-α,而这一过程依赖于p-p38MAPK的激活,而持续的细胞内Ca2+又和TNF-α的分泌密切相关6,18。很多证据表明TNF-α和神经痛密切相关。神经损伤后的TNF-α的释放被认为是异常疼痛敏化的起始因子,对SNL模型大鼠预注射依那西普,大鼠的触觉疼痛异常可减少50%19-21。Ohtori22的研究发现,在坐骨神经毁损模型后,大鼠胶质细胞TNF-α的上调和其附近的神经元上的TNF-α受体1(P55受体)上调相一致。
细胞因子IL-6是重要的炎性介质,参与中枢神经系统的神经病理学反应。用
作为中枢神经系统重要的前炎性因子,IL-1β参与中枢神经损伤的过程。Deleo24对坐骨神经冻伤(sciatic cryoneurolysis,SCN)和慢性坐骨神经压迫损伤模型(CCI)的研究中均发现大鼠脊髓腰段的IL-1β含量增高。小胶质细胞是其主要的分泌细胞25。单独用ATP刺激并不会导致IL-1β增高。但是,细胞外ATP却可以触发用LPS预处理的小胶质细胞分泌IL-1β,Sanz 26认为ATP对LPS预处理的小胶质细胞分泌是一个强刺激,1mMATP就已经可以观察到明显的IL-1β的增高。在ATP诱导的IL-1β增高的过程中P2X7受体必不可少,27,28。鞘内注射IL-1β可诱导脊髓p38MAPK激活15,反过来,鞘内注射p38MAPK抑制剂,又可以减少IL-1β诱导的痛觉过敏29。
综上所述,外周神经损伤后,小胶质细胞内的部分信号传导通路可以归结如下:外周神经损伤,神经元释放化学因子。例如:TNF-α和 IL-1β前体,ATP等。TNF-α和IL-1β直接作用于小胶质细胞上的TNFα和IL-1β受体,进一步诱导p38MAPK在小胶质细胞内激活。神经损伤后释放的ATP,使得小胶质细胞上的P2X4和P2X7受体激活1,导致小胶质细胞内Ca2+增高。离体和在体研究均证实细胞内Ca2+浓度升高使p38MAPK激活和磷酸化。而激活的p-p38MAPK激活NF-κB或其他转录因子等,使小胶质细胞合成和分泌各种细胞因子和生长因子TNFα,IL-1β,IL-6,BDNF。这些细胞因子和生长因子又通过突触前和突触后作用又使得感受活化,并能显著促进痛觉超敏产生3-5。
随着对利多卡因等常用局麻药药理研究的逐渐深入,发现其除了作为一种门控钠离子通道抑制剂以外,还有许多非钠离子通道抑制剂的作用30。Lahav31发现利多卡因可抑制HT-29和Caco-2 细胞株自发或TNF-α诱导的IL-8和IL-1β的合成分泌,并呈剂量依赖性。Lan32-35对人脐静脉上皮细胞的研究发现利多卡因明显抑制TNF-α诱导的IL-6,IL-8和IL-1β的分泌,但是所需要的利多卡因的浓度高于临床常用浓度。
根据这些研究结果,我们在本部分实验中,运用realtime PCR和ELSIA的方法,研究利多卡因对ATP所诱导的小胶质细胞TNF-α,IL-6,和IL-1β的mRNA水平和蛋白分泌水平的影响。结果发现,利多卡因可以抑制ATP所诱导的小胶质细胞TNF-α,IL-6,和IL-1β的合成与分泌,其效果呈剂量依赖性,
但是是否利多卡因的这些作用是由于利多卡因本身的毒性作用,导致细胞活力下降所造成的?因此,在本实验中,我们运用MTT方法检测了小胶质细胞的活力,发现
有意思的是Jianguo G. Gu 和 Amy B. MacDermott37对DRG和DH神经元上的P2X受体的研究。ATP激活DRG神经末端的P2X受体释放谷氨酸需要激活电压门控Ca2+通道,使细胞内Ca2+增高,而TTX-Resistant的Na+电流产生的动作电位此过程中必不可少。
结论
本实验结果显示,利多卡因可以抑制ATP诱导的大鼠小胶质细胞分泌TNF-α,IL-1β和IL-6,其机制可能是利多卡因通过抑制ATP诱导的细胞内钙增加,从而抑制了小胶质细胞内的p-p38MAPK激活。
参考文献
1. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003; 424: 778-83
2. Tsuda M, Inoue K: [Neuropathic pain and ATP receptors in spinal microglia]. Brain Nerve 2007; 59: 953-9
3. Ji RR, Suter MR: p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 2007; 3: 33
4. Makoto Tsuda KIaMWS: Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 2005; 28: 101-7
5. Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007; 10: 1361-1368
6. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y: Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 2000; 75: 965-72
7. Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K: Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 2001; 78: 1339-49
8. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-8
9. Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF, Raguz S: P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem 2003; 278: 10344-52
10. Kumar S, Boehm J, Lee JC: p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2: 717-26
11. Svensson CI, Fitzsimmons B, Azizi S, Powell HC, Hua XY, Yaksh TL: Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem 2005; 92: 1508-20
12. Hains BC, Waxman SG: Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006; 26: 4308-17
13. Inoue K, Tsuda M, Koizumi S: Chronic pain and microglia: the role of ATP. Novartis Found Symp 2004; 261: 55-64; discussion 64-7, 149-54
14. Kim SY, Bae JC, Kim JY, Lee HL, Lee KM, Kim DS, Cho HJ: Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport 2002; 13: 2483-6
15. Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL: Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 2003; 86: 1534-44
16. Okada S, Hagan JB, Kato M, Bankers-Fulbright JL, Hunt LW, Gleich GJ, Kita H: Lidocaine and its analogues inhibit IL-5-mediated survival and activation of human eosinophils. J Immunol 1998; 160: 4010-7
17. Svensson CI, Schafers M, Jones TL, Powell H, Sorkin LS: Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci Lett 2005; 379: 209-13
18. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y: Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 2004; 24: 1-7
19. Schafers M, Geis C, Brors D, Yaksh TL, Sommer C: Anterograde transport of tumor necrosis factor-alpha in the intact and injured rat sciatic nerve. J Neurosci 2002; 22: 536-45
20. Schafers M, Lee DH, Brors D, Yaksh TL, Sorkin LS: Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003; 23: 3028-38
21. Schafers M, Svensson CI, Sommer C, Sorkin LS: Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 2003; 23: 2517-21
22. Ohtori S, Takahashi K, Moriya H, Myers RR: TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine 2004; 29: 1082-8
23. Milligan ED, Twining C, Chacur M, Biedenkapp J, O'Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR: Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003; 23: 1026-40
24. DeLeo JA, Colburn RW, Rickman AJ: Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res 1997; 759: 50-7
25. Giulian D, Baker TJ, Shih LC, Lachman LB: Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 1986; 164: 594-604
26. Sanz JM, Di Virgilio F: Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells. J Immunol 2000; 164: 4893-8
27. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F: ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 1997; 36: 1295-301
28. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F: Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 1997; 159: 1451-8
29. Sung CS, Wen ZH, Chang WK, Chan KH, Ho ST, Tsai SK, Chang YC, Wong CS: Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. J Neurochem 2005; 94: 742-52
30. Swanton BJ, Shorten GD: Anti-inflammatory effects of local anesthetic agents. Int Anesthesiol Clin 2003; 41: 1-19
31. Lahav M, Levite M, Bassani L, Lang A, Fidder H, Tal R, Bar-Meir S, Mayer L, Chowers Y: Lidocaine inhibits secretion of IL-8 and IL-1beta and stimulates secretion of IL-1 receptor antagonist by epithelial cells. Clin Exp Immunol 2002; 127: 226-33
32. Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, MacIntyre DE, Forrest MJ: Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003; 100: 7947-52
33. Lan W, Harmon D, Wang JH, Ghori K, Shorten G, Redmond P: The effect of lidocaine on in vitro neutrophil and endothelial adhesion molecule expression induced by plasma obtained during tourniquet-induced ischaemia and reperfusion. Eur J Anaesthesiol 2004; 21: 892-7
34. Lan W, Harmon D, Wang JH, Shorten G, Redmond P: The effect of lidocaine on neutrophil CD11b/CD18 and endothelial ICAM-1 expression and IL-1beta concentrations induced by hypoxia-reoxygenation. Eur J Anaesthesiol 2004; 21: 967-72
35. Lan W, Harmon DC, Wang JH, Shorten GD, Redmond PH: Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine. Anesth Analg 2005; 100: 409-12
36. Nishimura Y, Kanada A, Yamaguchi JY, Horimoto K, Kobayashi M, Tatsuishi T, Kanemaru K, Ueno SY, Oyama Y: Cytometric analysis of lidocaine-induced cytotoxicity: a model experiment using rat thymocytes. Toxicology 2006; 218: 48-57
37. Gu JG, MacDermott AB: Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 1997; 389: 749-53